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Three-Phase Transformer Models

* Three-phase transformer banks are found in the distribution substation where the
voltage 1s transformed from the transmission or subtransmission level to the
distribution feeder level.

* In most cases, the substation transformer will be a three-phase unit perhaps with
high-voltage no-load taps and, perhaps, low-voltage load tap changing (LTC).

* For a four-wire wye feeder, the most common substation transformer connection
1s the delta—grounded wye. A three-wire delta feeder will typically have a delta—
delta transformer connection in the substation.

* Three-phase transformer banks out on the feeder will provide the final voltage
transformation to the customer's load. A variety of transformer connections can
be applied. The load can be pure three-phase or a combination of single-phase
lighting load and a three-phase load such as an induction motor.

* In the analysis of a distribution feeder, it 1s important that the various three-phase
transformer connections be modeled correctly.
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Three-Phase Transformer Models

Unique models of three-phase transformer banks applicable to radial distribution
feeders will be developed. Models for the following three-phase connections are
included:

*Delta—grounded wye

*Ungrounded wye—delta

*Grounded wye—delta

*Open wye—open delta

*Grounded wye—grounded wye

*Delta—delta

*Open delta—open delta
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Introduction

Fig.1 defines the various voltages and currents for all three-phase transformer banks
connected between the source-side node n and the load-side node m.

Node n I £ Node m
o = n —1® H, X o+—— —> o
Van i Vas Vab I Van
L = - = ® H, X, @ > = > o
Ven L AG & @ Vi I Vin
¢«—>—————— e, X, e ————>—4
L Lim-' Iy ! Ven _ -
B = ® H, Xy ® = .
Source side Load side

Fig.1 General three-phase transformer bank
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Introduction

In Fig.1, the models can represent a step-down (source side to load side) or a step-up (source side to load
side) transformer bank. The notation is such that the capital letters A, B, C, and N will always refer to the
source side (node n) of the bank and the lower case letters a, b, ¢, and n will always refer to the load side
(node m) of the bank. It is assumed that all variations of the wye—delta connections are connected in the
“American Standard Thirty Degree” connection. The described phase notation and the standard phase
shifts for positive sequence voltages and currents are

Step-down connection

Vip leads Vg, by 30 (1)
I, leads I, by 30 (2)
Step-up connection
V. leads V,5 by 30 (3)
I, leads I, by 30 (4)
MNode n L I Mode m
. > m ® H, i e . }J .
Vaw I, Vas Vab k Vau
® > r—— X; &1— ey g
VB:\' I fo 1".:tIC.' - s = V-‘A' Jr‘ V_,I”
*—>—— —-® i Xy o— =—
Viens ¥,
_ _ _{..'n. 'F."\. -|r... cn N _
- } e H, i e = .
Source side Load side

Fig.1 General three-phase transformer bank
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Generalized Matrices

The models to be used in power-flow and short-circuit studies are generalized for the
connections in the same form as have been developed for line segments and voltage
regulators. In the “forward sweep” of the “ladder” iterative technique, the voltages at
node m are defined as a function of the voltages at node » and the currents at node m.

The required equation is

[VLNabc] = [At] ) [VLNABC] - [Bt] ’ Uabc] (5)

In the “backward sweep” of the ladder technique, the matrix equations for computing
the voltages and currents at node n as a function of the voltages and currents at node

m are given by

[VLNABC] = [at] . [VLNabc] + [br] ' [Iabc] (6)

Uagcl = lee] - [VLNgpe] + [de] - [Hape] (7)
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Generalized Matrices

[VLNgpl = [Ael - [VLNggc] = [Be] - [anc] (5)
[VLNpgcl = lag] - [VLNgpe) + [be] - Uap] (6)
Uagcl = leel - IVLNgpe] + [de] - Hapc) (7)

In Equations (5) through (7), the matrices [VLN ;5] and [VLN , ] represent the line-
to-neutral voltages for an ungrounded wye connection or the line-to-ground voltages
for a grounded wye connection.

For a delta connection, the voltage matrices represent “equivalent” line-to-neutral
voltages. The current matrices represent the line currents regardless of the
transformer winding connection.

In the modified ladder technique, Equation (5) 1s used to compute new node voltages
downstream from the source using the most recent line currents. In the backward
sweep, only Equation (7) 1s used to compute the source-side line currents using the

newly computed load-side line currents.
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Transformer model

[VLNabc] = [At][VLNABC] - [Bt] [Iabc] (8.5)
[VLNagc] = [ae][VLNgpe] + [bel[lapc]  (8.6)

["'ABC] = [Ct][VLNabc] + [dr][fabc] (8-7)
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Transformer model

A — Grounded Y A - (‘}ruunded Y Ungrounded Y — A Grounded Y — Grounded Y
Step-down Step-up Step-down
n [0 2 1 n 2 10 1 -1 0 n, 0 0
[a;] -1 0 2 [0 21 n|0 1 -1 0 n, 0
2 1 0 1 0 2 -1 0 1 0 0 n
n O Zztb Ztc n zztﬂ th D Ztab _Ztab 0 ntztﬂ ﬂ [}
bl |-=| 2, ©0 2z, ||=|0 2z, 2z, ‘| z, 2z, O 0 nZ, 0
zzta zth 0 ng {] Zztc -2Ztcﬂ Ztcn 0 0 ﬂ nt zf-:'
0 0 0 0 0 0 0 0 0 0 0 0
[c] 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1[1 -1 o0 1[1 0 =1 11 -1 0 1[1 0 0]
ld:] —| 0 1 -1 —|10 1 -1 3—1 2 0 —l0 1 0
"lo1 0 1 "lo1 0 1 lo2 -1 0 "tlo 0 1
1[1 0 -1 1[1 0 =1 1210 11 0 0
[A:] -t 1 0 —|0 1 -1 a0 21 —[0 10
Lo -1 1 -1 0 1 11 0 2 ‘L0 0 1l
Zta 0 0 1 Zztub + ztbc ZZEM - Zztab 0
[B!] 0 th 0 [Zrabc] e zzlbf - er_m 4zf-bc - Ztm 0 [Zfﬂbc]
O 0 Ztc Ztab - 42[(‘& _Ztab - Zztm O
n VLLrated primary VLLmted primary VLNrated primary VLNmted primary
t VLNrared secondary VLNr‘ated secondary VLLmted secondary VLNr'ated secondary
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Delta-Grounded Wye Step-Down Connection

* The delta—grounded wye step-down connection 1s a popular connection that
1s typically used 1n a distribution substation serving a four-wire wye feeder
system. Another application of the connection 1s to provide service to a load
that 1s primary single phase. Because of the wye connection, three single-
phase circuits are available thereby making it possible to balance the single-
phase loading on the transformer bank.

* Three single-phase transformers can be connected delta—grounded wye in a
“standard thirty degree step-down connection” as shown in Fig.2.

Hl, H2g Hi Viea
L ]

Vi,

Fig.2 Standard delta-grounded wye connection with voltage 1
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Voltages

The positive sequence phasor diagrams of the voltages in Fig.2 show the relationships between
the various positive sequence voltages. Care must be taken to observe the polarity marks on the
individual transformer windings. In order to simplify the notation, it is necessary to label the
“1deal” voltages with voltage polarity markings as shown in Fig.2. Observing the polarity
markings of the transformer windings, the voltage V7, will be 180° out of phase with the
voltage V., and the voltage Vz, will be 180° out of phase with the voltage V ;. Kirchhoff's
voltage law (KVL) gives the line-to-line voltage between phases a and b as

Ve =W ,— (8)

The phasors of the positive sequence voltages of Equation (8) are shown in Fig.2.
H1, H2g M3 Ve

Fig.2 Standard delta-grounded wye connection with voltage 19
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Voltages

The magnitude changes between the voltages can be defined in terms of the actual
winding turns ratio (n,). With reference to Fig.2, these ratios are defined as follows:

VLLrated primary (9)

Ng =
VLN rated secondary

With reference to Fig.2, the line-to-line voltages on the primary side of the
transformer connection as a function of the ideal secondary side voltages are given

by Vag 0 -1 07 [Vt,
VBC =N - [ 0 0 -1] th ’ [VLLABC] = [AV] : [Vtabr:] (10)
Vea -1 0 0 Vt.
where

Fig.2 Standard delta-grounded wye connection with voltage
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Voltages

Vag 0 -1 07 [Vta
VBC =N¢- 0 0 -11- th ] [VLLABC] = [AV] ’ [Vtabr:] (10)
Ve -1 0 ol lve,

Equation (10) gives the primary line-to-line voltages at node » as a function of the ideal
secondary voltages. However, what 1s needed is a relationship between “equivalent” line
-to-neutral voltages at node n and the i1deal secondary voltages. The question 1s how is
the equivalent line-to-neutral voltages determined knowing the line-to-line voltages?
One approach is to apply the theory of symmetrical components.

The known line-to-line voltages are transformed to their sequence voltages by

[VLLy12] = [As]™' - [VLL4p] (11)
where
1 1 1
[A] = |1 a¢ as
1 a; a?
a,=1.02120
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Voltages

By definition, the zero sequence line-to-line voltage is always zero. The relationship
between the positive and negative sequence line-to-neutral and line-to-line voltages is

known. These relationships in matrix form are given by

VINgy 1 0 07 [VLL,
VLN1 = |0 t; 0]- VLLl , [VLNIDIZ] — [T] . [VLLUIZ] (13)
VLN, 0 0 ¢ts1 LVLL,
where ;
t= VTE/_30

Since the zero sequence line-to-line voltage is zero, the (1,1) term of the matrix [7]
can be any value. For the purposes here, the (1,1) term 1s chosen to have a value of
1.0. Knowing the sequence line-to-neutral voltages, the equivalent line-to-neutral

voltages can be determined.
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Voltages

VIN,g 1 0 07 [VLL,
VLN, =0 t5 Of-|VLLy|; [VLNy12] = [T]- [VLLo4,] (13)
VLN, 0 0 ¢tgl LVLL,

The equivalent line-to-neutral voltages as a function of the sequence line-to-neutral
voltages are
[VLNagc] = [Ag] - [VLNq,] (14)

Substitute Equation (13) into Equation (14):

[VLNgpc) = [As] - [T] - [VLLo1,] (1)
[VLLo12] = [Ag]™ - [VLL4p] (11)
Substitute Equation (11) into Equation (15):
[VLNspc] = [W] - [VLLagp] (16)
where 1[4 10
(W] =I[4] -[T]-[A]F =5-10 2 1 (17)
1 0 2
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Voltages

[VLNgpc]l = [W] - [VLL4p(] (16)
12 10

[W] = [As] : [T] . [f'qs]_1 = g [U 2 1‘ (17)
1 0 2

[VLLagc] = [AV] - [Vtapc) (10)

Equation (17) provides a method of computing equivalent line-to-neutral voltages from a
knowledge of the line-to-line voltages. This is an important relationship that will be used in a
variety of ways as other three-phase transformer connections are studied.

To continue on, Equation (16) can be substituted into Equation (10):

[VLNagc] = W]« [VLLagc] = [W]- [AV] - [Vtgpel = [ar] - [VEape) (18

where

la,] = [W] - [AV] = 1 0 2

2 1 0

—t,
3 (19)

021]
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Voltages

n, [0 2 1
[ac] = W] -[Av1=3-[1 0 2] (19)
2 1 0

Equation (19) defines the generalized [a,] matrix for the delta—grounded wye step-
down connection.

The 1deal secondary voltages as a function of the secondary line-to-ground voltages
and the secondary line currents are

[Vtabc] = [VLGabc] + [Ztabc] ' [Iabc] (20)

where Zt, 0 0
[Ztabc] =10 th (21)

0 0 Zt,

Note in Equation (21) there is no restriction that the impedances of the three
transformers be equal.
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Voltages
[VLNsgc] = [W] - [VLL] = [W] - [AV] - [Vt = [a:] - [VEgpe] (18)

[Vtabc] = [VLGabc] + [Ztabc] ) [Iaba:] (20)
Substitute Equation (20) into Equation (18):

[VLNagcl = la¢] - (IVLGape] + [Ztapel - Uanc])

[VLNABC] = [at] : [VLGabc] + [bt] : “abc] (22)
where
0 2-7Zt, Zt,
Zt, 0 27t
2-7t, Zty 0

[be] = [ar] - [Ztape] = — -

3 (23)

19
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Voltages

VAH 0 —1 0 Vta
VBC =N - 0 0 -11- th ; [VLLAB(:] = [AV] . [Vtabc] (10)
Ver 1 0 ol lve

The generalized matrices [a,] and [b,] have now been defined. The derivation of the
generalized matrices [4,] and [B,] begins with solving Equation (10) for the ideal
secondary voltages:

[Vtabc] = [AV]_l : [VLLABC] (24)

The line-to-line voltages as a function of the equivalent line-to-neutral voltages are

[VLLagc] = [D] - [VLNgpc] (25)
where
1 -1 0
(D] = ’ 0 1 —1] (26)
-1 0 1
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Voltages

[Vtabc] = [AV]_l ’ [VLLABC] (24)

[VLLpgcl = [D] - [VLNpc] (25)

Substitute Equation (25) into Equation (24):

[Vtapel = [AV]™1 - [D] - [VLNsgc] = [Af] - [VLN 5] (27)
where
1 [1 0 -1
[4,] = [AV]~ - [D] = —- [—1 1 0 ] (28)
o -1 1
[Vtabc] = [VLGabc] + [Ztabc] : [Iabc] (20)
Substitute Equation (20) into Equation (27):
[VLGabc] + [Ztabc] ' [Iabc] = [At] ' [VLNABC] (29)

21
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Voltages

VLGapc] + [Ztanel - Uanel = [Ae]l - [VLNppc] (29)

Rearrange Equation (29)
[VLGapcl = [A¢] - [VLNapc] = [Be] - [anc] (30)

where
Zt, 0 0
[Bt] - [Ztabc] =10 Zty 0 (31)
0 0 Zt,

[VLNgpcl = lae] - [VLGapcl + [be] - [Tapc] (22)

Equation (22) 1s referred to as the “backward sweep voltage equation” and Equations
(30) 1s referred to as the “forward sweep voltage equation.” Equations (22) and (30)
apply only for the step-down delta—grounded wye transformer. Note that these
equations are in exactly the same form as those derived in earlier chapters for line
segments and step-voltage regulators. .
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Current

The thirty degree connection specifies that the positive sequence current entering the
H, terminal will lead the positive sequence current leaving the X, terminal by 30°.
Fig.3 shows the same connection as Fig.2 but with the currents instead of the voltages
displayed.

I Iy
H1, H2p H3¢ cB
& ’ %
| |’ |1
i, )
-l A
Iyce—— Igq—— lep+——
i B AN
t Y Y g Y Y \g, Y Y Y \g
[, «—— I, «—— [, +——
M M In4
f{'
ZL Zt, Zt. ;ﬂ]
Igl Ibl Ilfl Iﬂ
+ Vi, — @+ Vi, Ve
X2, X3, - I
ot Vag ~—
X1 § T

Fig.3 Delta-grounded wye connection with current .
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Current

As with the voltages, the polarity marks on the transformer windings must be
observed for the currents. For example, in Fig.3, the current /, 1s entering the polarity
mark on the low-voltage winding so the current /, flowing out of the polarity mark
on the high-voltage winding will be in phase with /.. This relationship is shown 1n the
phasor diagrams for positive sequence currents in Fig.3.

I Iy
| |’ |1
i, )
-l A
Ipc —— Igq—— lep+——
. B AN
t Y Y g Y Y \g, Y Y Y \g
[, «—— I, «—— [, +——
M M In4
I{'
ZL Zt, Zt. L T
I:r l 'rb ll IL' ll Iﬂ
T vn.‘; - + V.[:.:-
X2, X3, B I,
+ Vag ~—
4 & T

Fig.3 Delta-grounded wye connection with current ”
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Current

The line currents can be determined as a function of the delta currents by applying
Kirchhoff's current law (KCL):

Iy 1 -1 0 lac (32)
Igl=10 1 —1|-|lga
Ic -1 0 1 Icp
In condensed form, Equation (32) is (33)
lLagc]l = [D] - [ID4pc]
where 1 -1 0
[D]=| 0 1 -1
-1 0 1
The matrix equation relating the delta primary currents to the secondary line currents
1s given by Iy, 1 0 01 [l
Icp “lo o 1l LI
1 [T 00
[IDABC] — [AI] ) [Iabc] [Af] = IO 1 0 (35)
"t o 0 1 2
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Current
Uagc] = [D] - [IDgpc]

1 -1 0

[D]=[U 1 —1‘ (33)
-1 0 1
{1 00

[AI]——-[D 1 0] (35)
1o 0 1

Substitute Equation (35) into Equation (33):
[IABC] = [D] ) [AI] ' [Iabc] = [Ct] ' [VLGabc] + [dt] ) ["abc] (36)

where

ld.] =[D] -[AI]=:r-[0 1 —1] (37)

o |

%]

[ 3

 —

I
————

SRS
coco

=g=
e——

(38)
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Current
[IﬂBC] = [D] ) [AI] ' [Iabc] = [Ct] ’ [VLGabc] + [dt] ) [!abc] (36)

Equation (36) (referred to as the “backward sweep current equations”)
provides a direct method of computing the phase line currents at node n
knowing the phase line currents at node m. Again, this equation is in the same
form as that previously derived for three-phase line segments and three-phase
step-voltage regulators.

The equations derived 1n this section are for the step-down connection.

Section 8.4 summarizes the matrices for the delta—grounded wye step-up
connection.
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Example 1

In the example system of Figure 4, an unbalanced constant impedance load is being served at
the end of a 1 mile section of a three-phase line. The 1 mile long line 1s being fed from a
substation transformer rated 5000 kVA, 115 kV delta—12.47 kV grounded wye with a per-unit
impedance of 0.085 £ 85.

3
|
|

. N
r !

Fig.4 Example system

¢
C
Ar

The phase conductors of the line are 336,400 26/7 ACSR with a neutral conductor 4/0 ACSR.
The configuration and computation of the phase impedance matrix are given in Example 4.1
From that example, the phase impedance matrix was computed to be

0.4576 + j1.0780 0.1560 + j0.5017 0.1535 + j0.3849
[Zline,,.] = [0.1560 + j0.5017 0.4666 + j1.0482 0.1580 + j0.4236| Q/mile
0.1535+0.3849 0.1580 + j0.4236 0.4615 + j1.0651 N
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Example 1

The general matrices for the line are

1 0 0 1 0 0
[Aiine] =10 1 0 [Bline] = [ZIineabc] [d] =0 1 O
0 0 1 0 0 1

The transformer impedance needs to be converted to per unit referenced to the low-
voltage side of the transformer. The base impedance 1s

12.472 - 1000
Zvase = —gggg = 3110

The transformer impedance referenced to the low-voltage side is

Z; = (0.085485) -31.1 =0.2304+j2.6335

The transformer phase impedance matrix is

0.2304 + j2.6335 0 0
(Ztgpe] = 0 0.2304 + j2.6335 0 Q
0 0 0.2304 + j2.6335

29
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Example 1

The unbalanced constant impedance load is connected in grounded wye. The load
impedance matrix 1s specified to be

12 +j6 0 0
[Zload ] = 0 13 + j4 0 9)
- 0 0 14475

The unbalanced line-to-line voltages at node 1 serving the substation transformer are

given as 115,00020
[VLL,pc] = |116,5002 — 115.5
123,5382121.7

V

A. Determine the generalized matrices for the transformer. The “transformer turn's”
ratio 1s
_ KVLLpgn 115

= = = 15.9732
KVLNIGW 12.47/ﬁ

ng
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Example 1

From Equation (19)
_n, [0 21
la,] = [W] '[AV]=T' 1 0 2 (19)
2 1 0
[0 21 0 —10.6488 —5.3244
[at]=Tt- 1 0 2|=|-53244 0 —10.6488
2 10 —10.6488 —5.3244 0

From Equation (23)

—n 0 2-Zt, Zt,
1be] = lae] - [Ztgpe] = Tt | Ztg 0 2+ Zt, (23)
2.7t, Zt, 0

0 —2.4535 — j28.0432 —1.2267 — j14.0216
[b,] = |-1.2267 — j14.0216 0 —2.4535 — j28.0432
—2.4535 — j28.0432 —1.2267 — j14.0216 0

31
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Example 1

From Equation (37)
L [1 -1 0
[d¢] = [D] -[AI]=n—- 0 1 -1 (37)
t1l-1 0 1
0.0626 —0.0626 0
[dJ] =] o 0.0626 —0.0626
—0.0626 0 0.0626
From Equation (28
q (28) 110 -1
[A.] = [AV]1-[D] = n_ -1 1 0 (28)
J 0 -1 1
0.0626 0 —0.0626
[A;] = |—0.0626 0.0626 0
0 —0.0626  0.0626

32
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Example 1

From Equation (31)
Zt, 0 0
[Br] = [Ztabc] =10 Zta 0 (31)
0 0 Zt,
0.2304 + j2.6335 0 0
[B;] = 0 0.2304 + j2.6335 0
0 0 0.2304 + j2.6335

33
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Example 1

B. Given the line-to-line voltages at node 1, determine the “ideal” transformer
voltages. From Equation (27),

0O -1 0 0 —15.9732 0
[AV]=nt-[0 0 —1‘=[ 0 0 —15.9732‘
-1 0 0 —15.9732 0 0
7734.12 — 58.3
Vtapel = [AV]'l-[D]-[VLNABc]=’ 7199.62180 |V
7293.5,64.5

34
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Example 1

C. Determine the load currents.
Since the load is modeled as constant impedances, the system is linear and the

analysis can combine all of the impedances ari%f w ne and~load) to an
equivalent impedance matrix. KVL gives 3 2 (et )

"5

[Vt_gb},] = ([Ztapcl + [Zlinegp ] + [Zload g ]) - [Imbf:] = [ZEQQI}C] *[apel

t

13.0971 4 j10.6751  0.2955 + j0.9502  0.2907 + j0.7290
[Zequp.] =| 0.2955+j0.9502  14.1141+ j8.6187 0.2992 + j0.8023 |
0.2907 +j0.7290  0.2992 + j0.8023  15.1045 + j9.6507

The line current can now be computed:

471.7¢4£ — 95.1
[Iabc] = [ZEQabc]_l ) [Vtabc] = ’456-7/—149-9
427.3233.5

A
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Example 1

D. Determine the line-to-ground voltages at the load in volts and on a 120 V base:

[Vioad,pc] = [Zload ] - [Iape] = | 6212.2£167.0 | V

[6328.14 — 68.6
6352.6453.1

The load voltages on a 120 V base are

105.5
[Vlﬂadlz[}] =1103.5
105.9

The line-to-ground voltage at node 2 are

6965.42 — 66.0
[VLGapel = aiine] - [Vioadpe| + [b{ine] lapc]l = | 6580.6£171.4 | V
6691.4456.7

36
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Example 1

E. Using the backward sweep voltage equation, determine the equivalent line-to-
neutral voltages and the line-to-line voltages at node 1:

65,2632 — 147.5
70,2722494.0

69,4434 — 30.3
[VLNABC] = [at] ' [VLGabc] + [bt] ' [Iabr:] = [ ] V

115,00040
[VLLAB(:-] = [D] . [VLNAgc] = Ill6,500£ — 115.5
123,5384121.7

v

It 1s always comforting to be able to work back and compute what was initially
given. In this case, the line-to-line voltages at node 1 have been computed and the
same values result that were given at the start of the problem.

37
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Example 1

F. Use the forward sweep voltage equation to verify that the line-to-ground voltages
at node 2 can be computed knowing the equivalent line-to-neutral voltages at node 1

and the currents leaving node 2:
6965.42 — 66.0‘
V

[VLGapcl = [Ae] - [VLNapc] = [Bel - [apcl = [ 6580.6£171.4
6691.4£56.7

These are the same values of the line-to-ground voltages at node 2 that were
determined working from the load toward the source.

Example 8.1 has demonstrated the application of the forward and backward sweep
equations. The example also provides verification that the same voltages and
currents result working from the load toward the source or from the source toward
the load.

In Example 8.2, the system of Example 8.1 1s used only this time the source
voltages at node 1 are specified and the three-phase load is specified as constant PQ.
Because this makes the system nonlinear, the ladder iterative technique must be
used to solve for the system voltages and currents.
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Example 2

Use the system of Example 8.1. The source voltages at node 1 are

115,00040

115,0002120
The wye-connected loads are n |, ;\,(Au (_A CTWHQ.E (b-we,, /\;0\6} _
1700 0.90
[kVA] = 1200] |PF| = [0.85]
1500 0.95

The complex powers of the loads are computed to be

1530 4 j741.0
1020.+ j632.1
1425+ j468.4

SL; = kVA, - eJ-acos(PF) — kW + jkvar
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Example 2
P CManc

The ladder iterative tech 5ue mus
|

e used to analyze the svstem. A simnle Mathcad® program
is shown in Fig.5.

K= |labe < Start — ‘PGD!
@\ \/z L /Vﬁ(,t lload,,. < Start h it

== b”

Vg « Start g 4 b

A ELN « W-ELL

\ l ABC ABC .
forngl .. 200

Aione g
A'L f ):' (;\A,, e VLN Ayl ') — Byge lload,pe 1‘4"&(‘7‘%

_ forj €1..3
115000 o (ViLpe) 0 ‘Lt‘»’M-?l?Q.Sfi?? = y
| VLLagc; | =| 115000 —_— - | -120 ue (| Doadss, Fm . T W\é
deg T (N r

115000 120 =

forkel.3 g

0 ) | VN~ Vg

kVLL,,.- 1000 B =
Start:= | 0 Tol: = .000001 VM = ——
ﬁ Error,,,, + max{Error)

0

break if Error,,, < Tol

\f’md i \'FSLNahc

. o al
- "l ’
L r Out, « V3LN, o { ’
v { Outy ¢ V2LN,;, ’

O'L'I.t:j €« Iub‘_.

Fig.5 Mathcad® program Outy - Lanc

Out; + n
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Example 2

Note in this program that in the forward sweep the secondary transformer voltages are
first computed and then those are used to compute the voltages at the loads. At the end
of the routine, the newly calculated line currents are taken back to the top of the
routine and used to compute the new voltages. This continues until the error in the
difference between the two most recently calculated load voltages are less than the
tolerance. As a last step, after conversion, the primary currents of the transformer are
computed.

After nine iterations, the load voltages and currents are

6490.12 — 66.7 261.92 —92.5
[VLNyyaql = | 6772.42176.2 el =1 117.22144.4
6699.4253.9 223.9235.7
The primary currents are
24.32 —70.0
[Ligc] = [20.52 — 175.2
27.4,63.8
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Example 2

The magnitude of the load voltages on a 120 V base are

108.2]

[Vload,,] = !112.9
111.7

Needless to say, these voltages are not acceptable. In order to correct this problem,
three step-voltage regulators can be installed at the secondary terminals of the

substation transformer as shown in Fig.6.
2 g

O —

——

Fig.6 Voltage regulators installed

Using the method as outlined in Chapter 7, the final steps for the three regulators are
14
[Tap] = [ 9
10 2
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Example 2

The regulator turns ratios are

0.9125
aR; = 1—0.00625-Tap; = [[}.9438
0.9375
The regulator matrices are . _
— 0
aR,
1 1.0959 0 0
[Areg] = ldregl =) 0 —= 0 = 0 1059 0
2 1 0 0 1.0667
0 0 ak,
0 0 0
[B?"eg] =[(0 0 0
0 0 0
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Example 2
At the start of the Mathcad routine, the following equation 1s added:

I ey <—Sat
In the Mathcad routine, the first three equations inside the # loop are

Iy —A- BN g — By Iy

VZLNf.IbC — Areg ' VRegabc - Breg ) Iﬂ.bC

V3LNgpc <= Ajine * VZLNgpc — Biine * labc

At the end of the loop, the following equations are added:

With the three regulators 1nstalled, the load voltages on a 120 V base are

119.8
[Vload .| = lll?.?‘

119.7
As can been seen from this example, as more elements of a system are added, there will be
one equation for each of the system elements for the forward sweep and backward sweeps.
This concept will be further developed in later chapters.
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Delta-Grounded Wye Step-Up Connection

Fig.7 shows the connection diagram for the delta—grounded wye step-up connection.

Phasor diagrams for the voltages and currents are also shown in Fig.6. Note that the high-side
line-to-line voltage leads the low-side line-to-line voltage and the same can be said for the high-
and low-side line currents.

The development of the generalized matrices follows the same procedure as was used for the
step-down connection. Only two matrices differ between the two connections.

H1, Hlg H3,
L

L ]
+ Vv |71+ v, -
fﬂl an fﬂl ac Ufc
o

o
— g — & 8C
Hy W AAN_S—
WYY Y e 'a's's W
+ Vt, - + Vi - -
T 7T
Zt Zty, Zt
I l 'rb l Iu i
+ Vab - e Ve - ()
X2 X3.
Vrrg ii] e

Fig.7 Delta-grounded wye step-up connection
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Delta-Grounded Wye Step-Up VS Step-Down
Connections

Hl1, H2g H3.-
Hl, H2p H3 ® ® ®
® P
oll* Yas ZI[TY ¥ee T
A !B IC Y "y
A -
:} + Vl:.d — +* Fﬂ.ﬂ — - Fﬂc =
—las — e — lea Hy WRAANS— R AANS— AN
. LW A AA_— L A AA— Y Y g Y Y Y O\ L e a a™
b YN . e + W - + Vi - + v, -
+ Vi, = + Vi, - - VL. - Pt Pt
T T
Zt 2t 2t
Zt, Zt, Zt, § T @ B : "nT
n
I b In: 1
I 'lrh Il.- a + F =. o+ lIl"llb._. -
o lﬂ&
+ Vab - ot Vie - - X2, o
+
V ﬂ-ﬁ' XSL ,._ Vﬂg = = -_
o+ “ - 2 g
-+ X1
X, £ a

Delta-grounded wye step-up connection Delta-grounded wye step-down connection
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Delta-Grounded Wye Step-Up Connection

The primary (low side) line-to-line voltages are given by

Vagp 1 0 0] [Vt
VBC = Ng¢ - 0 1 0}- th [VLLAgcl S [AV] . [Vtabf:] (39)
Vea 0 0 11 LVt
where
1 0 0
[AV] = Ng - 0O 1 0 n, = KVLLyated Primary
0 0 1 L KVLNrqtea Secondary
The primary delta currents are given by
IAE 1 1 0 O fa
Ipc[=—-10 1 0|-|lp| [IDagcl=I[AIl"[Iap] (40)
Ica “1lo o 1l L

where

{1 00
[AI]=—-[0 1 0‘

"t o o 1
47
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Delta-Grounded Wye Step-Up Connection

The primary line currents are given by

IA 1 0 -1 IAB
["B‘ = [—1 1 0 ] ' ’IBC] llagc] = [DI] - [ID4pc] (41)
I¢ 0 -1 1 Ica
where
1 0 -1
IDI|=]|-1 1 0 ‘
0 -1 1
The forward sweep matrices are
Applying Equation (28),
{1 [1 0 -1
[A] = [4aV]~t-[D] = —- [ 0 1 —1] (42)
olo1 0 1
Applying Equation (31),
Zt, 0 0
[Bt] - [Ztabc] =10 Zty, 0 (43)
0 0 Zt,
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Delta-Grounded Wye Step-Up Connection

The backward sweep matrices are

Applying Equation (19),
n, [2 10
la) = W] -[aVI=Z-o 2 1 (44)
1 0 2
Applying Equation (23),
L [2ezte ze, 0
[b] = [a,] -[Ztabc]=?t- 0  2-7Zt, Zt, (45)
Zt, 0 2-Zt,
Applying Equation (37),
{ [1 0 -1
lde] =[D] -[AlIl=—-10 1 -1 (46)
Mol-1 0 1
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Undergrounded Wye-Delta Step-Down Connection

Three single-phase transformers can be connected in a wye—delta connection. The
neutral of the wye can be grounded or ungrounded. The grounded wye connection is
characterized by

* The grounded wye provides a path for zero sequence currents for line-to-ground
faults upstream from the transformer bank. This causes the transformers to be
susceptible to burnouts on the upstream faults.

* If one phase of the primary circuit is opened, the transformer bank will continue to
provide three-phase service by operating as an open wye—open delta bank.
However, the two remaining transformers may be subjected to an overload
condition leading to burnout.

The most common connection 1s the ungrounded wye—delta. This connection is
typically used to provide service to a combination of single-phase “lighting” load and
a three-phase “power” load such as an induction motor. The generalized constants for
the ungrounded wye—delta transformer connection will be developed following the
same procedure as was used for the delta—grounded wye.

50
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Undergrounded Wye-Delta Step-Down Connection

Three single-phase transformers can be connected in an ungrounded-wye “standard 30
degree connection” as shown 1n Fig.8.

The voltage phasor diagrams in Fig.8 illustrate that the high-side positive sequence
line-to-line voltage leads the low-side positive sequence line-to-line voltage by 30°.
Also, the same phase shift occurs between the high-side line-to-neutral voltage and the
low-side “equivalent” line-to-neutral voltage. The negative sequence phase shift 1s
such that the high-side negative sequence voltage will lag the low-side negative
sequence voltage by 30°.

H3-C

Fig.8 Standard ungrounded wye-delta connection step-down .
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Undergrounded Wye-Delta Step-Down Connection

The positive sequence current phasor diagrams for the connection in Fig.8 are shown

in Fig.9.
Fig.9 illustrates that the positive sequence line current on the high side of the
transformer (node n) leads the low-side line current (node m) by 30°. It can also be

shown that the negative sequence high-side line current will lag the negative sequence
low-side line current by 30°.

Fig.9 Positive sequence current phasors
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Undergrounded Wye-Delta Step-Down Connection

The positive sequence current phasor diagrams for the connection in Fig.8 are shown
in Fig.9.

Fig.9 illustrates that the positive sequence line current on the high side of the
transformer (node n) leads the low-side line current (node m) by 30°. It can also be
shown that the negative sequence high-side line current will lag the negative sequence
low-side line current by 30°.

The definition for the “turns ratio n,” will be the same as Equation (9) with the
exception that the numerator will be the line-to-neutral voltage and the denominator
will be the line-to-line voltage. It should be noted in Fig.8 that the “ideal” low-side
transformer voltages for this connection will be line-to-line voltages. Also, the “ideal”
low-side currents are the currents flowing inside the delta.

Fig.9 Positive sequence current phasors -
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Undergrounded Wye-Delta Step-Down Connection

The basic “ideal” transformer voltage and current equations as a function of the “turns

ratio” are

VAN Vrab
Ven | = U nt | Vipe (47)
Ven 0 nt Vtca
where _ KVLNyated primary
e = KVLLyrqated Secondary
[VLNABC] = [AV] ) [Vtabc] (48)
”Dba ng
ID., | = 0 nt (49)
ID,,
[IDgpc] = [AI] - [Iapc) (50)
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Undergrounded Wye-Delta Step-Down Connection
[VLNypcl = [AV] - [ViEgp] (48)
Solving Equation (48) for the “ideal” delta transformer voltages,

[Vtabc] = ["i”‘{]_1 ’ [VLNABE] (51)

The line-to-line voltages at node m as a function of the “ideal” transformer voltages
and the delta currents are given by

Vap Vtp Ztyp 0 0 IDy,,
[Vbc] = thr:] —| 0 Ztpe O |-|IDep (52)

Vea Vtca 0 0 Zteq| UDge
[VLLabc] = [Vtabc] - [Ztabc] : [‘,Dabc] (53)
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Undergrounded Wye-Delta Step-Down Connection

[IDgpc] = [AI] - [I5pc] (50)
[Vtabc] = [AV]_I ) [VLNABE‘] (51)
[VLLabc] = [Vtabc] - [Ztabc] * [‘(Dabc] (53)

Substitute Equations (50) and (51) into Equation (53):
[VLLapc) = [AV]™ - [VLNpc] = [ZNtanc) - [apc] (54)

where
nt * Ztab U 0
[ZNtapel = [Ztap ] - [AIl = 0 N+ Ztpe 0 (55)
0 0 ng - Zt,q

The line currents on the delta side of the transformer bank as a function of the wye
transformer currents are given by

[Iabc] = [Df] * [IDabc] (56)
where 1 0 -1
[DI] = [—1 1 0 ]
0 -1 1 (57).
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Undergrounded Wye-Delta Step-Down Connection

[IDgpc] = [AIl - [Ipc] (50)
Uabc] = [DI] - [‘,Dabc] (56)
Substitute Equation (50) into Equation (56):
Uapcl = [DI] - [AI] - [Iapc] = [DY] - [lapc] (58)
where
ng 0 -n;
[DY] = [DI] -[All=|-n¢ n, O ] (59)
0 -—n n
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Undergrounded Wye-Delta Step-Down Connection

Because the matrix [DY] is singular, it is not possible to use Equation (58) to develop
an equation relating the wye-side line currents at node n to the delta-side line currents
at node m. In order to develop the necessary matrix equation, three independent
equations must be written. Two independent KCL equations at the vertices of the
delta can be used. Because there is no path for the high-side currents to flow to
ground, they must sum to zero and, therefore, so must the delta currents in the
transformer secondary sum to zero. This provides the third independent equation. The
resulting three independent equations in matrix form are given by

AR I

Solving Equation (60) for the delta currents,

R I LA I R

[IDgpc] = [LO] + [Iapo] (62)
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Undergrounded Wye-Delta Step-Down Connection

[IDabc] - [LO] . [Iab[]] (62)
Equation (62) can be modified to include the phase ¢ current by setting the third column of the

[L0] matrix to zero:
Ipa —1 0
A g b
—1 0

[IDabc] =[L] - [[abc] (64)
UDabc] = [Al] - [IIABC] (50)
Solve Equation (50) for [/,;.] and substitute into Equation (64):
[IABC] = [AI]_I : [L] ) [Iabc] = [dt] ) ["abc] (65)
where
. 1 =1 0
[d,] = [A7* - [L] = [ 1 2 o] (66)
‘-2 -1 0
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Undergrounded Wye-Delta Step-Down Connection

Ipa 1 —1 0] 1,
[fcb]:§l1 2 0 -Ifb] (63)
lac -2 -1 ol |l
1 -1 0
[d]=[A" - [Ll=—|1 2 0] (66)
‘-2 -1 0
[VLLape] = [AV]™ - [VLNage] — [ZNtape] - [apc) (54)

Equation (66) defines the generalized constant matrix [d,] for the ungrounded wye—
delta transformer connection. In the process of the derivation, a very convenient
equation (Equation (63)) evolved that can be used anytime the currents in a delta need
to be determined knowing the line currents. However, it must be understood that this
equation will only work when the delta currents sum to zero, which means an
ungrounded neutral on the primary.

The generalized matrices [a,] and [b,] can now be developed. Solve Equation (54) for
[VLN 5c]:

[VLNypc] = [AV] - [VLLgpc] + [AV] - [ZNtgpc] - Lapc] 67)
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Undergrounded Wye-Delta Step-Down Connection

[Lagc] = [AIT" - [L] ’ [Iabc] = [dr] ’ [Iabc:] (65)
[VLNgpc] = [AV] - [VLLap] + [AV] - [ZNtgpe] - [1apc] (67)
Substitute Equation (65) into Equation (67):
[VLNABC] = [AV] ' [VLLﬁbC] + [AV] ' [ZNtabc] ' [dt] ' [Iﬁbc]
[VLLH.EJC] = [D] - [VLNabc]
where 1 -1 o0
pl=(o0 1 -1
-1 0 1
[VLNggc] = [AV] - [D] « [VLNgpc] + [AV] - [ZNtgpe] - [de] - [apel
where [VLNHDCJ = [al:] ' [VLNHDC] + [bt] : ['rabc] (68)
1 -1 0
[a] = [AV] - [D] = n; - \ 0 1 —1] (69)
-1 0 1
. Ztay, — —Ztg O
[be] = [AV] - [ZNtapc] - [de) =5+ | Ztoe  2-Ztye O (70)
—2Zt.y —Zt.g O
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Undergrounded Wye-Delta Step-Down Connection

The generalized constant matrices have been developed for computing voltages and
currents from the load toward the source (backward sweep). The forward sweep
matrices can be developed by referring back to Equation (54), which is repeated here

for convenience:

[VLLabc] = [AV]_I ' [VLNABC] - [ZNtabc] ' [IABC] (71)

[VLN,gc] = [W] - [VLLspC] (16)

Equation (16) 1s used to compute the equivalent line-to-neutral voltages as a function
of the line-to-line voltages:

[VLNabc] = [W] ) [VLLabc] (72)
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Undergrounded Wye-Delta Step-Down Connection

[VLLabc] = [AV]_l ) [VLNABC] - [ZNtabc] : [IABC] (71)
[VLNgpc] = (W]« [VLLgp] (72)
Substitute Equation (71) into Equation (72):

[VLNgpc] = [W] - [AV]~t- [VLNapcl — W] - [ZNtape] - [de] - lagc] (73)
where

2 1 0
‘ (74)

[Ar]=[W]-[AI]‘1=il0 2 1
‘1 0 2

[Bel = W] [ZNtap] - [de] = 5|2 - Ztye =2 Ztea 4 Ztpe—Zlcq O (75)
Ztyy —4-Zt,, —Ztgy —2-Zt.g O

The generalized matrices have been developed for the ungrounded wye—delta transformer
connection. The derivation has applied basic circuit theory and the basic theories of
transformers. The end result of the derivations is to provide an easy method of analyzing the
operating characteristics of the transformer connection. Example 8.3 will demonstrate the
application of the generalized matrices for this transformer connection. 63
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Example 3

Fig.10 shows three single-phase transformers in an ungrounded wye—delta connection serving
a combination of single-phase and three-phase load in a delta connection. The voltages at the
load are balanced three phase of 240 V line to line. The net loading by phase is

Sy =100RA & 09 lgiy &  fuor

She = Scq =50kVAat 0.8 lagging power factor

Fig.10 Undergrounded wye-delta step-down with unbalanced load

[OWA STATE UNIVERSITY ECpE Department

64



Example 3

The transformers are rated as follows:

* Phase AN: 100 kVA, 7200-240 V,Z=0.01 + j0.04 per unit

* Phases BN and CN: 50 kVA, 7200-240 V,Z = 0.015 +j0.035 per unit
Determine the following:

* The currents in the load

* The secondary line currents

* The equivalent line-to-neutral secondary voltages

* The primary line-to-neutral and line-to-line voltages

* The primary line currents

Before the analysis can start, the transformer impedances must be converted to actual values in
Ohms and located inside the delta-connected secondary windings.
“Lighting” transformer:

0.24%-1000 . .
Zpase = 750 = 0.576 Ztgy = (0.01450.4)-0.576 = 0.0058 + j0.023 Q

“Power” transformers:

_ 024%-1000 _ Ztye = Zteq = (0.015 + j0.35) - 1.152
50 =0.0173 +,0.0403 0 B
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Example 3

The transformer impedance matrix can now be defined:

0.0058 + j0.023 0 0
[Ztapel = 0 0.0173 + j0.0403 0 Q0
0 0 0.0173 + j0.0403

The turn's ratio of the transformers is n, = 7200/240 = 30.

Define all of the matrices

12 10 1 -1 0 1 0 -1
[W]=§- 0 2 1 [D]=]l0 1 -1 [DI]=|-1 1 0
1 0 2 -1 0 1 0 -1 1
1 -1 0 30 =30 O
la,] =n, - 0 1 —1 o 30 —30
—1 0 — 0 30
n, | Zta —Ztay 00576+ 102304 —0.576 — j0.2304 0
[bt]=? Ztye 27ty 0.1728 +j0.4032  0.3456 + j0.8064 0
—27t,, —Zt.q —0.3456 — j0.8064 —0.1728 —j0.4032 0
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Example 3 0 0 0
[Ct]z[ﬂ 0 U]
0 0 0
1 00111 —0.0111 0
[dt]=3-[ —1] [ 0.0111 -0.0111]
e 00111 0 0.0111

0 2 1 0.0222 0.0111

1 0 2 00111 0 0.0222

2 1 0 0.0222 0.0111 0
st 3k |

22tap + Zty,,  2Zty.—Zty, O
[B,] = =|2Zty, — 2Zt.q 4Zty. —Zt,q O
Ltgy —4Zty, —Zty, — 272ty 0
0.0032 +j0.0096 0.0026 + j0.0038 0
0 0.0058 +0.0134 0
—0.007 —0.0154 —0.0045-;0.0115 0
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Example 3

Define the line-to-line load voltages:

24040
[VLLgpc] = |2402 — 120
2404120
Define the loads:
100£cos™(0.9)]  [90 + j43.589
[SDypc] = | 502 cos71(0.8) | =| 30+,j30 |kVA
504 cos~1(0.8) 30 + ;30

Calculate the delta load current

D SD; - 1000\ p
a VLLabci
ab 416.74 — 25.84
= A
c

[ID,;.] = Ilbc 208.32 — 156.87

|
I 208.3483.13

a

68
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Example 3

Compute the secondary line current:

52294 - 4797
Uabcl = [DI] - [IDgpc] = |575.32 —119.06| A
360.8453.13

Compute the equivalent secondary line-to-neutral voltages:

138.562 — 30
VLN ] = [W] - [VLLyp.] = |138.562 — 150| V
138.56290

Use the generalized constant matrices to compute the primary line-to-neutral voltages
and line-to-line voltages:

7367.621.4
[VLNge] = [ae] - [VLN o] + [be] - [Iope] = [7532.34 - 119.1‘ %
7406.22121.7
12,9356231.54
[VLL,gc] = [D] - [VLN,5e] = l12,8845/_— 88.95
12,8147£151.50 .
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Example 3

The high primary line currents are

8.952 — 166.43
7.682101.16

It is interesting to compute the operating kV A of the three transformers. Taking the product of
the transformer voltage times the conjugate of the current gives the operating kVA of each

11.542 — 28.04
["AEC] - [dt] * [‘rabc] - ‘ A

transformer.

~ VLNypc, - ("ABCi)*
B 1000

67.42247.37|kVA

56.80220.58

85.02£29.46
ST; _

The operating power factors of the three transformers are

[PF] = |cos(47.39) 67.7

c0s(29.46) 87.1
c0s(20.58) 93.6
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Example 3

Note that the operating kVAs do not match very closely the rated kVAs of the three
transformers. In particular, the transformer on phase 4 did not serve the total load of 100 kVA
that is directly connected its terminals. That transformer is operating below rated kVA, while
the other two transformers are overloaded. In fact, the transformer connected to phase B is
operating 35% above rated kVA. Because of this overload, the ratings of the three
transformers should be changed so that the phase B and phase C transformers are rated 75
kVA. Finally, the operating power factors of the three transformers bare little resemblance to
the load power factors.

Example 3 demonstrates how the generalized constant matrices can be used to determine the
operating characteristics of the transformers. In addition, the example shows that the obvious
selection of transformer ratings will lead to an overload condition on the two power
transformers. The beauty in this is that if the generalized constant matrices have been applied
in a computer program, it is a simple task to change the transformer kVA ratings and be
assured that none of the transformers will be operating in an overload condition.

Example 3 has demonstrated the “backward” sweep to compute the primary voltages and
currents. As before when the source (primary) voltages are given along with the load PQ, then
the ladder iterative technique must be used to analyze the transformer connection. .
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Undergrounded Wye-Delta Step-up Connection

The connection diagram for the step-up connection is shown in Fig.11.

The only difference between the step-up and step-down connections are the
definitions of the turns ratio n,, [AV], and [A]]. For the step-up connection,

__ KVLNyated primary (76)
KVLLyrated Secondary

ne

Hl-A H1-B H3-C

it V BC
'rli

N N

_,
-
—

Vi, V; Ny
¥
Frr:q
Voe

\ [ 0 -1 0
V. - & _ " [A!] =N - 0 0 -1 (78)
s v -1.0 0
Fig.11 Undergrounded wye-delta step-up connection
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Example 5

The equations for the forward and backward sweep matrices, as defined in Section 8.3,
can be applied using the definitions in Equations (76) through (78). The system of
Example 8.3 1s modified so that transformer connection is step-up. The transformers
have the same ratings, but now the rated voltages for the primary and secondary are

KVLNyated Primar y

e = KVLLyqted secondary (76) Primary:
WL, =240 UN . =138.6V
0 0 -1
[AV]=n;-|1—-1 0 0 (77) Secondary:
0 -1 0 W ., =12470V
0O -1 0
[All=n.-|0 o -1| 8 ne = —2_ = 0.0111
1 0 0 12,470
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Example 5

The transformer impedances must be computed in Ohms relative to the secondary and
then used to compute the new forward and backward sweep matrices. When this 1s
done the new matrices are

60 30 0
[d] =[AIl7" - [L] = ’—30 30 0‘
—30 —60 0

0 —-60 =30
[A] = [W]-[AV] ! = [—30 0 —60‘
—-60 —-30 O

8.64 +j2592  6.91+1037 0
[B,] = [W] - [ZNtgpel - [d,] = 0 15.55 +j36.28 0
~19.01 — j41.47 —12.09 —31.10 0

Using these matrices and the same loads, the output of the program gives the new
load voltages as

12,055258.2
[VLLyp.] = l11,982.¢ —61.3
12,1062178.7 4

:
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Grounded Wye-Delta Step-Down Connection

The connection diagram for the standard 30 degree grounded wye (high)—delta (low)
transformer connection grounded through an impedance of Z, is shown in Fig.12.
Note that the primary is grounded through an impedance Z,.

Basic transformer equations:
The turn's ratio is given by

KVLNyatea Primary

ng = (79)

KVLLyated secondary

Fig.12 The grounded wye-delta connection 5
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Grounded Wye-Delta Step-Down Connection

Basic transformer equations:
The basic “ideal” transformer voltage and current equations as a function of the turns

ratio are
VAN 1 0 0 Vtab
Ven|=n¢|0 1 0] - |Vipe (80)
VCN 0 0 1 Vtr:a
1 0 O
[VLNABC] = [AV] ) [Vtabc] [AV] =n:10 1 0
0 0 1
IDy, 1 0 0 I,
IDep|=ne0 1 0f - |1 (81)
IDac 0 0 1 IC
1 0 O
[IDgpc] = [AI - [Inpc] [AI]=n,(0 1 0
0O 0 1

76
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Grounded Wye-Delta Step-Down Connection
Van’ 1 0 0 Viap
[VBN =n.(0 1 0‘ '|Vfbc‘ (80)
Ven. 0 0 1 Vt.,

Solving Equation (80) for the “ideal” transformer voltages,
[Vtane]l = [AV]™! - [VLN4pc] (82)

The line-to-neutral transformer primary voltages as a function of the system line-to-
ground voltages are given by

Ly Lo, Z

Van Vag g “g “g Iy
Vain=Vaec—Z, - (Iy+ 15+ 1
AN AG g (In+1p+1c) \VBN =\Vee|— 49 44 Zg4]| - IB] (83)
V V Z, Z, Z I
Vi =Vg —Z4-(Ia+1p+1¢) N « g9 ‘
Vaw =Vg —Zg-(Ia+1p+1¢) [VLNppcl = [VLGapcl — [ZG] - [apc]
where Lg Zg Zg
(ZG] = |49 Zg Z4
Zg Zg Zg 77
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Grounded Wye-Delta Step-Down Connection

The line-to-line voltages on the delta side are given by

Vip1 [Vtal [Ztss, 0 0 Dy,
Vicl = \th —| 0 Lty 0 . |1Dd,‘ (84)
Vea Vt, 0 0 Zt,, ID,.
[VLLabc] = [Vtabc] - [Ztabc] . [[Dabc]

[Vtapcl = [AV]™" - [VLNgp(] (82)

Substitute Equation (82) into Equation (84):
[VLLabc] = [“‘4“’]]_1 ' [VLNABC] - [Ztabc] ’ [‘,Dabc] (85)
[IDabc] = [AI] - [IABC] (81)

Substitute Equation (81) into Equation (85):
[VLLgpc] = [AV]™' - [VLNapc]l = ([Ztape] - [AID) - [Lapc] (860)

78

IOWA STATE UNIVERSITY ECpE Department



Grounded Wye-Delta Step-Down Connection
[VLNagcl = [VLGapc] — [ZG] - [1agc] (83)
[VLLabc] = [AV]_l ) [VLNABC] - ([Ztabc] ) [AI]) ) [IABC] (86)
Substitute Equation (83) into Equation (86):

[VLLyo) = [AV]™Y - ([VLGage] = [2G] - [upe]) — (Ztapel - [AI]) - [Lupe] -

[VLLgpe] = [AV]TY - [VLGppe] — ([AV]™E - [ZG] + [Ztgpe] - [AID) - [1apc]

[IDabc] — [Af] : [IABC] (81)

Equation (81) gives the delta secondary currents as a function of the primary wye-
side line currents. The secondary line currents are related to the secondary delta

currents by 1

abc [D” [!Dabc] .
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Grounded Wye-Delta Step-Down Connection

The real problem of transforming currents from one side to the other occurs for the
case when the line currents on the delta secondary side [/ ,.] are known and the
transformer secondary currents [/D,, ] and primary line currents on the wye side [/ ;]
are needed. The only way a relationship can be developed i1s to recognize that the sum
of the line-to-line voltages on the delta secondary of the transformer bank must add up
to zero. Three independent equations can be written as follows:

lg = Ipg — lgc

(89)

Ip =1Icp — Ipq

KVL around the delta secondary windings gives
Vtab - Ztab : ‘rba + thc - Zrbc : ch + Vtca - Ztca . I{Ic =0 (90)

Replacing the “ideal” secondary delta voltages with the primary line-to-neutral
voltages,

V V, %4
n¢e ne ng

80
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Grounded Wye-Delta Step-Down Connection

V V V
AN | VBN | YeN

n, n, n, =Ztap Ipg + ZLtpc - Iep + Zteg - Igc (91)

Multiply both sides of the Equation (91) by the turns ratio »,:

Van +Vpy +Vey =np - Ztgp Ipg + N - Lty Iep Mg - Lt - Igc (92)

[VLNpgcl = [VLGapc] — [ZG] - [Iapc] (83)

Determine the left side of Equation (92) as a function of the line-to-ground voltages using
Equation (83):

VAN + VBN -+ VEN — VAG -+ VBG + VCG -3 Zg '(!A -+ IB + IC') (93)

1
Van +Ven + Ven = Vag + Ve + Vg — 3 - — Zg (Ipg + Icp + 1)
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Grounded Wye-Delta Step-Down Connection
Van + Ven + Ven = 1+ Ztap Ing + Np » Ztper Lep + Mg+ Zteg - Lo (92)
Van + Van + Ven = Vag + Vg + Veg — 3 - nit Zy (Ipa + Iep + Iac) 93)
Substitute Equation (93) into Equation (92):

3
Vag + Vg + Vg _n_r Ly Upa tcp tgc) =N ZLtgp Ipg + M= Ltpe Iep + M- Lteg - Ige

3 3 3
Vsum = (¢ * Ztgp +n_'Zg) Apg + (Mg - Zty, +n_'Zg) Aep + (Mg - Zteq +n_'Zg) lqc
t t t

Vaimn =Vg + Vg + Vg (94)
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Grounded Wye-Delta Step-Down Connection

[Iabc] = [DI] - [IDabc] (88)

lg = Ipg — Igc (89)
Iy = Ich — Ipg

3 3 3
Veurn = (Mg - Zt g, +n_'Zg) Apg + (g - Zty, +n_'Zg)'ch + (e - Zteq +n_'Zg)'Iﬂ-C
t t t

(94)
Equations (88), (89), and (94) can be put into matrix form:
I, 1 0 -1 Iyq
Ib = -1 3 1 3 0 3 ’ ch] (95)
Vgum nt‘Ztab +n_t'Zg nt'Ztab +n_r'Zg nt-Ztab-l-n—t'Zg ICIC
Equations (95) in general form is
[X]=[F]- [fDabc] (96)
Solve for [ID 4]
[IDgpc] = [F171 - [X] = [G] - [X] (97)
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Grounded Wye-Delta Step-Down Connection
[IDgpc] = [FI7 - [X] = [G] - [X] (97)

Equations (97) in full form is

Gip Giz Gy3 Ia
[[Dapcl = [G21 G2z G2 Iy
G G G Vic + Vi +V,
31 G32 G33 a6 T Vac +Vac (98)
Gi1 Gz Giz| [Vag] |Gi1 Giz O] [l
UDapc]l = |G21 G2z Gaz| - [Vpg|+ |G21 G2z O] -1
G31 G3p G3z| Wegl |G Giz 0] L
Equations (98) in short form is
[IDapc] = [G1] - [VLGapc] + [G2] - [Lapc] (99)
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Grounded Wye-Delta Step-Down Connection

[IDabc] = [AI] : [!ABC] (81)
Gi1 G122 Gy3 Vac Gy Gz O [q

[[Dapc] = [G21 G2z Gaz| - |Vee|+ |Ga1 Gaz Of - |lp (98)
G31 Gz G33 Vee G31 Gz O I

Substitute Equation (81) into Equation (98):

Uapcl = [AI]™" - [IDgpc] = [AIT™F - ([G1] - [VLGapc] + [G2] - [ape)) (100)

Uapcl = |x¢] - [VLGypc] + [de] - Ugp]

where
[x¢] = [AI]™" - [G1]

;] = [AI]7" - [G2]

Equation (100) is used in the “backward” sweep to compute the primary currents
based upon the secondary currents and primary LG voltages.
85
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Grounded Wye-Delta Step-Down Connection
[VLLape) = [AV]™ - [VLGagc) — ([AV]™' - [ZG] + [Ztapc] - [AID) - [agc] (87)
Uagcl = [xc] - [VLGpc] + 1de] - ap] (100)
The “forward” sweep equation is determined by substituting Equation (100) into
Equation (87):
[VLLapc] = [AV]™! - [VLGppc] —
([AV]_I ' [ZG] + [Ztabc] ) [AI]) ) ([xt] ' [VLGABC] + [dt] ' [Iabc])
Define [X1] = [Ztapc] - [AI] + [AV] ™! - [ZG]

[VLLabc] = ([AI] - [X]-] ) [xt]) ) [VLGABC] - [X]-] ) [dr] ) [Iabc]
[VLNabc] = [W] ' [VLLabc]
[VENgpe] = [W]- (([AV]™ = [X1] - [x]) - [VLGagcl — [X1] - [de] - anc])
[VLNgpe] = [W]- ([AV]™' = [X1] - [x¢]) - [VLGapc] — (W] - [X1] - [de] - [ape] (10D)
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Grounded Wye-Delta Step-Down Connection
[VLNgp] = W] - ([AV]™ = [X1] - [x¢]) - [VLGapcl — W] - [X1] - [de] - [Tapc]

101
The final form of Equation (101) gives the equation for the forward sweep: (101)

[VLNgpc) = [A¢] - [VLGapc] — [Bel - apc] (102)

where
[A¢] = [W] - ([AV]_l — [X1] - [x¢])

[Be] = [W] - [X1]- [d,]
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Open Wye-Open Delta

A common load to be served on a distribution feeder is a combination of a single-phase lighting
load and a three-phase power load. Many times the three-phase power load will be an induction
motor. This combination load can be served by a grounded or ungrounded wye—delta
connection as previously described or by an “open wye—open delta” connection. When the three
-phase load 1s small compared to the single-phase load, the open wye—open delta connection is
commonly used. The open wye—open delta connection requires only two transformers, but the
connection will provide three-phase line-to-line voltages to the combination load. Fig.13 shows

the open wye—open delta connection and the primary and secondary positive sequence voltage
phasors.

Hl1-A H2-B
Iy l/ Iy \L
= Vg + - Vg +

P et
+ Vi - + Vi, -

e |z ]

ab -

1, \L I, \L
"

-
-
-
N

-1 e |
=
Ls
[ 41

X

i

[

2
=

Fig.13 Open wye-open delta connection
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Open Wye-Open Delta

With reference to Fig.13, the basic “ideal” transformer voltages as a function of the “turn's
ratio” are

Vi ng 0 0 Vit
|VBG =10 ng O -|Vtpe (103)
VCG 0 0 ng Vtca
[VLGABC] = [AV] : [Vtabc]
H1-A H2-B
1 VAB 1 VAH
Iy 2 !
i
m Vac
Ip Iy
sl o | TN
Vipb —&+
Xl-a &' L‘f“’ Vie L4 x3c
Fig.13 Open wye-open delta connection
89

IOWA STATE UNIVERSITY ECpE Department



Open Wye-Open Delta
The currents as a function of the turn's ratio are given by
Iya = ng - Iy=Iq
Icp =ngp-lg=—I, (104)
Ip=—Ua+1)

Equation (104) can be expressed in matrix form by

AREER R

abc [AI] [IABC]

The 1deal voltages in the secondary can be determined by

Vt(lb = Vab + Zta‘.b . Ia
(106)
Vtpe = Ve — Ztpe - I
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Open Wye-Open Delta

[VLGapc] = [AV] - [Vigp] (103)
Vt(lb = Vab -+ Zta‘,b . Ia
(106)
thc - Vbc thc "{:
Substitute Equation (106) into Equation (103):
Vag = e - Vitgp=n¢ - Vap ¢ - Lty I
(107)

Ve = N Vitpe=ng * Vpe —N¢ - Lty I

Equation (107) can be put into three-phase matrix form as
VAG ng-Ztgy, 0 0 I
VBG = 0 nt T 0 0 —ng-Zty| - |1 (108)

0 0 0 I,
[VLGABC] = [AV] - [VLLabc] + [bt] . ["abc]

IOWA STATE UNIVERSITY ECpE Department
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Open Wye-Open Delta

[VLGABC] = [AV] - [VLLabc] + [bt] . ["abc]

The secondary line-to-line voltages in Equation (108) can be replaced by the
equivalent line-to-neutral secondary voltages:

[VLGABL‘] = [AV] - [D] - [VLNabc] + [bt] : [Iabc]

(108)

[VLGppc]l = la¢] - [VLNgp] + [be] - [ap] (109)
where
ng - Ztab 0 0
[at] = [AV] ) [D] [bt] - U 0 _nt . thc
0 0 0
The source-side line currents as a function of the load-side line currents are given by
_ - - 1 -
- 0 O — 0 0
ljﬂl nt [Ia] nt
Ig| = I I lde] =
_ 0 0 ——
I 0 O n, I, -
L0 0 0 A L0 O 0 A
[IABC] = [dt] ’ [Iabc] (19120)
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Open Wye-Open Delta

[VLGapc] = [ae] - [VLNgpc] + [be] - [Iapc) (109)
Uascl = [de] - Uapel (110)

Vag =N - Vigp=n¢ - Vgp tn¢ - Ztgp- Iy (107)
Vee = n¢ - Vitpe=np - Vpe —ny - Zity o I
Equations (109) and (110) give the matrix equations for the backward sweep. The forward
sweep equation can be determined by solving Equation (107) for the two line-to-line secondary

voltages: 1
Vap = n_r “Vag —Ztgp - Ig

1
Vpe = —+ Vg =2ty I, (111)
Ne
The third line-to-line voltage V_, must be equal to the negative sum of the other two line-to-line
voltages (KVL). In matrix form, the desired equation is
1 :

— 0 0
V] | Vac] [Zts 0 0 | [la
IVM 1o L o +[v35]—l 0 0 —zz,,,:‘ -[f,,] (112)
Vea 1 ntl Vea —Ztgy 0 Zty, I,
T
[VLLaIJ] = [BV] ) [VLGABC] - [Ztabc] ) [Iabc] 93
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Open Wye-Open Delta

The equivalent secondary line-to-neutral voltages are then given by

[VLNabc] = [W] [VLLABC] = [W] ' [BV] ) [VLGABC] - [W] ) [Ztabc] ) [Iabc] (113)

The forward sweep equation is given by
[VLNabc] = [At] : [VLGABC] - [Bt] : [Iabc]

where
2 1 0
[Ar.]=[W]°[BV]=3_ 1-1 1 0
" l-1 -2 0

2-Zt 0 —Zt
1 ab bc 114
[Bt] = [W] . [Ztabc] = § I —Ztgy 0 —Ztp, ( )

_Ztﬂb 0 2 * thﬂ'

04
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Open Wye-Open Delta

The open wye—open delta connection derived in this section utilized phases 4 and
B on the primary. This 1s just one of three possible connections. The other two
possible connections would use phases B and C and then phases C and 4. The
generalized matrices will be different from those just derived. The same procedure
can be used to derive the matrices for the other two connections.

The terms “leading” and “lagging” connection are also associated with the open
wye—open delta connection. When the lighting transformer 1s connected across the
leading of the two phases, the connection 1s referred to as the “leading” connection.
Similarly, when the lighting transformer 1s connected across the lagging of the two
phases, the connection is referred to as the “lagging” connection. For example, 1f
the bank 1s connected to phases A and B and the lighting transformer 1s connected
from phase 4 to ground, this would be referred to as the “leading” connection
because the voltage A-G leads the voltage B-G by 120°. Reverse the connection
and 1t would now be called the “lagging” connection. Obviously, there 1s a leading
and lagging connection for each of the three possible open wye—open delta

connections.
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Grounded Wye- Grounded Wye Connection

The grounded wye—grounded wye connection is primarily used to supply single-phase
and three-phase loads on four-wire multigrounded systems. The grounded wye—
grounded wye connection is shown in Fig.14.

Hl-4A H2-B H3-C
® ® ® *—
fAl IBl Ic\lf =+
™y 4y
v -
& Vg — + Ve - + Ve -

+ W, - oVt - + Vi, —
% M 2 M ¢
zt, 7k, Zt,
I L I, \|' I‘HI/
+ ® + o
X2-b bg X3-c ch
@+ Vag T .‘—_
Xl-a <
Fig.14 Grounded wye-grounded wye connection o6
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Grounded Wye- Grounded Wye Connection

Unlike the delta—wye and wye—delta connections, there 1s no phase shift between the
voltages and the currents on the two sides of the bank. This makes the derivation of
the generalized constant matrices much easier. The 1deal transformer equations are

_ KVLNrated primary
nt B KVLLratedSecondary (1 15)
Vag 1 0 0
Ve | = n, 0 1 0 (116)
Vee 0 0 1
0 0
[VLGapc] = [AV] - [Vitgp] [AV]=n,]0 1 0
0 0 1
I, 1 0 0 Iy
Ib = Nt 0O 1 O0f - IB'
I 0 0 1l L (117)
1 0 O
[Al(] = N4 0 1 0
[anc] = [AI] - [14pc]
abc ABC 0 0 1 .
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Grounded Wye- Grounded Wye Connection

With reference to Fig.14, the ideal transformer voltages on the secondary windings
can be computed by

Vt, Vagl Zt, 0 0 I,
[th — ng -|— 0 th 0 . I:fb] (118)
Vt, Veg 0 0 Zt.| LI

[Vtabc] = [VLGabc] + [Ztabc] : [Iabc]

H1-A H2-B H3-C

!cl. .__%_

vy - e v -
Zt zt, Zt
L b 2
- L [ ]
x2-b Vg X3-c V,
o+ Vag i .ﬁ
Xl-a
Fig.14 Grounded wye-grounded wye connection 03
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Grounded Wye- Grounded Wye Connection
[VLGapcl = [AV] - [Vigp] (116)
Vtapel = [VLGape] + [Ztape] * Uanbcl (118)
Substitute Equation (118) into Equation (116):

[VLGapc]l = [AV]- ([VLGgpc] + [Ztgpe] - [Iabc])

[VLGapc] = [ar] - [VLGapcl + [be] - [Tanc] (119)

Equation (119) is the backward sweep equation with the [a,] and [b,] matrices defined by

n, 0 O
la;] =[AV]=]0 n, O (120)
0 0 mn
ng - Zt, 0 0
[be] = [AV] - [Ztgpel =] O ne - Ztp 0 (121)
0 0 ng - Zt,
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Grounded Wye- Grounded Wye Connection
[VLGABC] = [at] ) [VLGabc] + [bt] ' [Iabc] (119)

The primary line currents as a function of the secondary line currents are given by

[IABC] — [dt] * [Iabc] (122)
where 1 [ 0 O
d.] =[AI]"' = —- [0 1 0‘
"o 0 1

The forward sweep equation is determined solving Equation (119) for the secondary line-to-
ground voltages:

[VLGabc] = [AV]_l ' [VLGABC] - [Ztabc] ’ [Iabc] (123)
[VLGabc] = [At] ' [VLGABE] - [Bt] ' ["abc]

[A] = [AV]-l [Be]l = [Ztap]
The modeling and analysis of the grounded wye—grounded wye connection does not present
any problems. Without the phase shift there 1s a direct relationship between the primary and

secondary voltages and currents as had been demonstrated in the derivation of the generalized
constant matrices. 100

[OWA STATE UNIVERSITY ECpE Department



Delta-Delta Connection

The delta—delta connection 1s primarily used on three-wire delta systems to provide
service to a three-phase load or a combination of three-phase and single-phase loads.
Three single-phase transformers connected in a delta—delta are shown in Fig.15.

H1-A H2-B H3-C

Xl-a @ ® X3
= +

Fig.15 Grounded wye-grounded wye connection .
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Delta-Delta Connection

The basic 1deal transformer voltage and current equations as a function of the “turn’s
ration” are

VLLyated Prima ry
= 124
nt VLLrqted Secondary ( )
VLLsp 1 0 0] [Vta
VLLgc|=n¢|0 1 0] «|Vitpe (125)
VLLca 0 0 11 LWty
0 O
[VLLagc] = [AV] - [Vitgpc] [AV] = n; - 0 1 0
0 0 1
Ipa 1 0 0 Y
[ep|=ne]0 1 0O -|lc
lca 0 0 11 LUy (126)
0 0
[IDape] = [AIl - [IDypc] [Alf=mn¢-f0 1 0
0 0 1
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Delta-Delta Connection

[IDapc] = [AI] - [IDypc] (126)
Solve Equation (126) for the source-side delta currents:
[IDspc] = [AIl™" - [IDgp] (127)
The line currents as a function of the delta currents on the source side are given by
Y
*|IBc
Ica
Uapcl = [DI] - [IDgpc] (128)
where
1 0 -1
[DI] = [—1 1 0 ]
0 -1 1
Substitute Equation (127) into Equation (128)
[Lascl = [DI] - [AI17* - [IDgpc] (129)

103
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Delta-Delta Connection
[IABC] = [DI] ’ [AI]_l ) [‘(Dabc] (129)
Since [A]] 1s a diagonal matrix, Equation (129) can be rewritten as

[IABC] = [A”_l ’ [D” ' [IDabc] (130)
The load-side line currents as a function of the load-side delta currents:
[Iabc] = [DI] ' [IDabc] (131)
Applying Equation (131), Equation (130) becomes
agcl = [AIT™ - [Lapc] (132)

Turn Equation (132) around to solve for the load-side line currents as a function of
the source-side line currents:

[‘Iabc] = [AI] - []ABC] (133)

Equations (132) and (133) merely demonstrate that the line currents on the two sides
of the transformer are in phase and differ only by the turn's ratio of the transformer

windings. In the per-unit system, the per-unit line currents on the two sides of the
transformer are exactly equal. s
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Delta-Delta Connection

The ideal delta voltages on the secondary side as a function of the line-to-line
voltages, the delta currents, and the transformer impedances are given by
[Vtabc] = [VLLabc] + [Ztabc] ) ["Dabc] (134)

where
Ztgy, O 0 ]

Ztapel = O Ztye O
0 0 Zt,
Substitute Equation (134) into Equation (125)
[VLLabc] = [AV] : [VLLabc] + [AV] ) [Ztabc] ) [IDabc] (135)

Solve Equation (135) for the load-side line-to-line voltages:
[VLLabc] = [AI]_l ) [VLLABC] - [Ztabc] ’ [IDabc] (136)

The delta currents [ID .| in Equations (135) and (136) need to be replaced by the

secondary line currents [/, ].
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Delta-Delta Connection

In order to develop the needed relationship, three independent equations are needed.
The first two come from applying KCL at two vertices of the delta connected

secondary: Lo I
a — ‘ba ac (1 37)
Iy=1g —1Ip
The third equation comes from recognizing that the sum of the primary line-to-line
voltages and therefore the secondary ideal transformer voltages must sum to zero.
KVL around the delta windings gives

Vtap — Ztgp * Ipg YVitpe — Ztpe - Iop + Vg — Zteg * 14c= 0 (138)
Replacing the “ideal” delta voltages with the source-side line-to-line voltages,
Vv, V V
AB+ BC+ < =Ztab'fba +thc“’cb +Ztca’1ac (139)

ng ng ng
Since the sum of the line-to-line voltages must equal zero (KVL) and the turn's ratios
of the three transformers are equal, Equation (139) 1s simplified to

0=172¢t;  Ipq +2ty - Icp + Zt; - Iy, (140)
106
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Delta-Delta Connection

0=2Zt, lpg +Zty -1y + Zto - I, (140)
Note in Equation (140) that if the three transformer impedances are equal, then the sum

of the delta currents will add to zero, meaning that the zero sequence delta currents will
be zero.

Equations (137) and (140) can be put into matrix form:

I, 1 0 =171 [lpa
[;b =|-1 1 0 -lfcb]
0 Z tab Z tbc Z tca I ac
Ioabc - []Dabc (141)
where
‘(Oabc] - {
0

[F]:[—l 1 0]
Zty, Ztpe Zteg
107
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Delta-Delta Connection

[Inabc] = [F] - [”-)abc] (141)
Solve Equation (141) for the load-side delta currents:
[IDabc] = [F]_l . [Ioabc] = [G]- [H]abc] (142)
where (6] = [F]!

Writing Equation (142) in matrix form gives
"ba Gi1 Gz Gy3 I, (143)
=|G21 Gz2 Ga3| -|I,
G31 G3p Gz 0
From Equations (142) and (143), it 1s seen that the delta currents are a function of the
transformer impedances and just the line currents in phases a and 5. Equation (143)

can be modified to include the line current in phase ¢ by setting the last column of the

(G] matrix to zeros:
Iba Gll GIZ a
= |p [IDabc] = [Gl] ) [Iabc] [Gl] =|Gz1 Gy O
l{-‘;31 GSZ 0 108

621 622 0
0
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Delta-Delta Connection
[VLLabc] — [AV] ' [VLLabc] + [AV] ' [Ztabc] ' [!Dabc] (135)
[IDabc] - [Gl] : [Iabc] (144)

When the impedances of the transformers are equal, the sum of the delta currents will be zero
meaning that there is no circulating zero sequence current in the delta windings.
Substitute Equation (144) into Equation (135):

[VLLABC] — [AV] ) [VLLabc] + [AV] : [Ztabc] : [Gl] ) [Iabc] (145)

The generalized matrices are defined in terms of the line-to-neutral voltages on the

two sides of the transformer bank. Equation (145) i1s modified to be in terms of
equivalent line-to-neutral voltages:

[VLNggc] = [W] - [VLLyp(]
= [W] ) [AV] : [D] ' [VLNabc] + [W] ) [Ztabc] ' [Gl] ' ["abc] (146)

Equation (146) is in the general form
[VLNagcl = la¢] < [VLNgpcl + [be] - Uanc]
la;] = (W] -[AV]- D]
[bt] = [AV] : [W] ’ [Ztabc] ' [61] 109
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Delta-Delta Connection

Uapel = [AI] - [lapc] (133)

Equation (133) gives the generalized equation for currents:
[asc] = [AI]™" - [Iape] = [de] * [abe] (148)

[de] = [AI]7*

The forward sweep equations can be derived by modifying Equation (136) in terms of equivalent line-to-
neutral voltages:

[VLNgpe] = [W] - [VLLgpc]
= [W] : ["{“’{]_1 : [D] : [VLNAEE] - [W] ' [Ztabc] ' [Gl] : [Ir:br:] (149)

The forward sweep equation is
VLNl = [Ac] - [VENagc] = [Be] * [Tane] (150)

where
[A] = [W] -[AV]~" - [D]

[Be] = W] - [Ztapc] - [G1]

The forward and backward sweep matrices for the delta—delta connection have been derived. Once again it has been a long
process to get to the final six equations that define the matrices. The derivation provides an excellent exercise in the
application of basic transformer theory and circuit theory. Once the matrices have been defined for a particular transformer
connection, the analysis of the connection is a relatively simple task. Example 8 will demonstrate the analysis of this
connection using the generalized matrices. 110
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Example 8

Fig.16 shows three single-phase transformers in a delta—delta connection serving an
unbalanced three-phase load connected in delta.

The source voltages at the load are balanced three phase of 240 V line to line:

12,47020
[VLL,.] = l12,4704 - 120] V
12,4702120

Fig.16 Delta-delta bank serving an unbalanced delta connected load .
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Example 8

The loading by phase is

S, =100 kVA at 0.9 lagging power factor

S,. =8S,.,= 50 kVA at 0.8 lagging power factor
The ratings of the transformers are

* Phase 4B: 100 kVA, 12,470-240 V,Z = 0.01 +;0.04 per unit
* Phases BC and C4 50 kVA, 12,470-240 V,Z=0.015 + j0.035 per unit

Determine the following:

The load line-to-line voltages
The secondary line currents
The primary line currents
The load currents

Load voltage unbalance

M

Before the analysis can start, the transformer impedances must be converted to actual values in
Ohms and located inside the delta connected secondary windings.

Phase ab transformer: 0.242 - 1000

Zoase = 15— = 0.576 0
Zt,, = (0.01 + j0.04) - 0.576 = 0.0058 + j0.023 0 .
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Example 8

Phase bc and ca transformers:
0.24%-1000

Zpase =~ = 11520

Ztpe = Ztea = (0.015 + j0.035) - 1.152 = 0.0173 + j0.0403 Q

The transformer impedance matrix can now be defined

0.0058 + j0.23 0 0
[Ztypel = 0 0.0173 + j0.0403 0 Q
0 0 0.0173 + j0.0403

The turn's ratio of the transformers is n, = 12,470/240 = 51.9583.
Define all of the matrices:

12 10 1 -1 0 1 0 -1
[W]=§-[0 2 1] [D]=]10 1 -1 [DI]=]-1 1 0
1 0 2 -1 0 1 0 -1 1

1 0 0 51.9583 0 0

[AV]=[AIl=n,-|0 1 0|= 0 51.9583 0
0 0 1 0 0 51.9583 s
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Example 8

1 0 —1
[F] = —1 1 0
0.0058 +j0.023 0.0173 + j0.0403 0.0173 + j0.0404

0.3941 —j0.0134 —0.3941 + j0.0134 3.2581 — j8.378
[G] =[F]~'=| 0.3941 — j0.0134  0.6059 + j0.0134 3.2581 — j8.378
—0.6059 — j0.0134 —0.3941 + j0.0134 3.2581 — j8.378

0.3941 — j0.0134 —0.3941 +0.0134 0
[G1] = | 0.3941—j0.0134  0.6059 + j0.0134 0
—0.6059 — j0.0134 —0.3941 + j0.0134 0

34.6489 —17.3194 -17.3194
la,] = [W] - [AV] - [D]=|-17.3194 34.6489 —17.3194
—17.3194 -—-17.3194 34.6489

0.2166 4+ j0.583  0.0826 + j0.1153 0]

[b,] = [AV]- [W] - [Zt..] - [G1] = | 0.0826 + j0.1153  0.2166 + j0.583 0
~0.2993 — j0.6983 —0.2993 — j0.6983 0

14
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Example 8

0.0192 0 0
[dt]—[Af]‘l—I 0 0.0192 0 ]
0 0 0.0192

—0.0064 0.0128 —0.0064
—0.0064 —-0.0064 0.0128

[A] = [W] - [AV]~*-[D] =

0.0128 —0.0064 —0.0064]

0.0042 +j0.0112  0.0016 +j0.0022 0
[B,] = [W] - [Ztup,.] - [G1] =| 0.0016 +j0.0022  0.0042 +j0.0112 0
—0.0058 — j0.0134 —0.0058 —j0.0134 0

115
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Example 8

The Mathcad program is modified slightly to account for the delta connections. The modified

program is shown in Fig.17.

12470 30
arg (VLLABCi)
‘VLLM,Cj = 12470 T =| -90
12470 150
0
Start:=| 0 Tol: =.000001 VM: =kVLL,,.- 1000
0

Fig.17 Mathcad program

IOWA STATE UNIVERSITY

X:=

VM =240

Ipe « Start

Vg « Start

VLG pc < W+ VLLspe

forne 1..200

VLN, + A - VLGape— By L.
VLLpe « D-VLN,,,
forjel.. 3

SL,- 1000
VLLa
forkel..3

ID abe;

VLLabe, = Vol
Error, « —m8 ——
VM
Error,,,, + max(Error)
break if Error ., < Tol

Vu|d * VLL&I}C
Ialn « DI- IU‘b‘

Ianc € dit L
Out, ¢ VLN,
Out, + VLL,,
Outy « L.

Outy « lype
Outs « 1D
QOut, < n

Out 116
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Example 8

After six iterations, the results are

232.9,28.3
[VLL,p.] =1231.02—91.4
233.12148.9

540.32 — 19.5
[I.c] = [593.62 —161.5
372.8,81.7

10.42 —19.5
1142 —161.5
7.2,81.7

[Lapc] =

429.322.4
[ID.] = [216.52 —128.3
214.5,112.0

V e = 0.59%

This example demonstrates that a small change in the Mathcad program can be made to
represent the delta—delta transformer connection. 117
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Open Delta-Open Delta
The open delta—open delta transformer connection can be connected in three different

ways. Fig.18 shows the connection using phase A8 and BC.
The relationship between the primary line-to-line voltages and the secondary i1deal

voltage 1s given by

Vag 1 0 0 Viap
Veel=n:1 0 1 0] - [Vt (151)
Vea -1 -1 0ol LWty
1 0 0
[VLL,pc] = [AV] - [Vt g, ] [AV]=n,-]0 1 0
-1 -1 0

Fig.18 Open delta-open delta using phases AB and BC 118
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Open Delta-Open Delta

The last row of the matrix [4 V] is the result that the sum of the line-to-line voltages

must be equal to zero.
The relationship between the secondary and primary line currents 1s

I

0
1 abc] [AI] - [IABc] [Af] = Ng¢ - l 1 0 _1]
0 0 1

The primary line currents as a function of the secondary line currents are given by

Iy 0
[13] [ 1 0 —1] [fb] (153)
Il ™ 0

0 O
[IABC] = [dt] : [fa,bc] ld;] = nt I Dfl g —11‘
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Open Delta-Open Delta

The 1deal secondary voltages are given by
Vtab - Vab + Ztﬂb . Ia (154)
th': - Vbt:‘ + thc . Ic

The primary line-to-line voltages as a function of the secondary line-to-line voltages

are given by
Vap =n¢ - Vigy = ng - Vap + e - Ltgp - Ig (155)

Vee =n¢  Vipe = e Ve + iy = 2ty I,

The sum of the primary line-to-line voltages must equal zero. Therefore, the voltage
V., 1s given by

Vap = —(Vap + Vap) = —n¢ - (Vap +ne - Ztgp + Vpe + ¢ - Ztp)  (156)

Vea= —N¢Vagp — N - Ztgp—ny - Vi — Ny - Zty,)

120
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Open Delta-Open Delta
Vap =n¢ - Vigp = e Vap + ¢ - Zitgp * Ig (155)
Vee = N¢ * Vipe = ne* Vpe + e - Lty Ic
Vap = —(Vap + Vap) = —n¢ - (Vap + ¢ Ztap + Ve + ¢ - Ztpe)  (156)
Vea = =1 - Vgp =g » Ztgp—n¢ * Ve — N * Zitpc)

Equations (155) and (156) can be put into matrix form to create the backward sweep voltage
equation:

[VLLABC] = [x] ) [VLLabc] + [B‘I] ' [Iabc] (157)
1 0 O
[X]=[AV]=nt-l0 1 0‘
-1 -1 0
Ztgp O 0

Bll]=n,-| 0 0 Zty
—Ztyy, 0 —Ztp,
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Open Delta-Open Delta

[VLLABC] = [x] ’ [VLLabc] + [BI] ’ [Iabc] (157)

Equation (157) gives the backward sweep equation in terms of line-to-line voltages. In
order to convert the equation to equivalent line-to-neutral voltages, the [W] and [D]
matrices are applied to Equation (157):

[VLLagc) = [AV] - [VLLgpc) + [y] - Uan] (158)

[VLNggcl = W] - [VLLgp ] = [W] - [AV] - [D] - [VLNgpc] + W] - [BI] - [gpc]

[VLNapc) = lac] - [VLNgpc| + [be] - lapcl
lac] = [W]-[AV] - [D]

[be] = [W] - [BI]

122
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Open Delta-Open Delta

The forward sweep equation can be derived by defining the ideal voltages as a
function of the primary line-to-line VoltageS'

Vfab‘ . [ VAB‘
Vipe| =—- *|VBe
Vt,q ne | _1 0 Ve, (159.a)
0
[Vtabc] = [BV] g [VLLABC] [BV] H 0 1 0
tl—-1 -1 0
The 1deal secondary voltages as a function of the terminal line-to-line voltages are
given by
[Vtab Vab Z Lab
tht:‘ = Vbt‘.‘ + 0 D thc er (159 b)
Vtea Vea —Ztqp —Ztpe

[Vtabc] = [VLLabc] + [BI] - Uabr:]

Ztgy, 0 0
0 0 Zty
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Open Delta-Open Delta

[Vtabc] = [BV] ' [VLLABC] (159-3)
[Vtabc] = [VLLabc] + [BI] ) [Iabc] (159-b)
[VLLABE] — [AV] ) [VLLabc] + [}"] ' [Iabc] (158)

Equate Equation (158) to Equation (159):
[BV] - [VLLABC] = [VLLabc] + [BI] - [Iabc]
VLLgpc] = [BV] - [VLLsgc] — [BI] - [apc]

(160)

Equation (160) gives the forward sweep equation in terms of line-to-line voltages. As
before, the [W] and [D] matrices are used to convert Equation (160) using line-to-

neutral voltages: [VLLgyc] = [BV] - [VLLogc] — [BI - [Igpe] (161)

[VLNgp] = [W] - [VLLgpc] = W] - [BV] - [D] - [VLNsgc]l — [W] - [BI] - [1apc]
VLNgpc| = [Ae] - [VLNggc] = [Bel - Uanc]
[Ae] = [W]-[BV]-[D]
[B:] = [W] - [BI 124
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Thank You!

125

IOWA STATE UNIVERSITY ECpE Department



